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THE JOINING OF LO&AL EXPANSIONS IN THE THEORY OF NON-LINEAR OSCILLATIONS* 

YU.V, MIKHLIN 

The behavlour of normal modes of oscillation in non-linear conservative 
systems with a finite number of degrees of freedom, when the amplitude 
changes from zero to infinity is studied, In the non-linear case, the 
normal oscillations represent a generalization of the normal oscillations 
of linear conservative systems (see /l/l. It is assumed that the potential 
of a non-linear system is a polynomial of even degree in all positional 
variables. One can construct the trajectories of the normal oscillations 
in configuration space both for sufficiently small amplitude (a quasi- 
linear expansion), and for sufficiently large amplitude, using the fact 
that in these cases the system is close to a uniform system (see /2, 3/). 
The laeal expansions obtained are joined using rational-fractional Padi?' 
representations (see /4/j which enables the behaviour of oscillation modes 
to be followed when the amplitude changes continuously. 

1. An initial conservative system is defined by the following equations of motion 

. . 
ii T llz, (zl. 5?. ( . ‘. &) = 0 (i = 1,1*. . . 17) 

i*.st 

where the potential n (zz.zz. __.~ z,) is a positive definite polynomial in zz, .I .I z, whose lowest 
degree is Wo, and the highest is 2?n. Here and below we assume that the kinetic energy is 
reduced to the form T = ’ 2 (ZP +. . . + q&-y. An equation of this type is often encountered 
problems of the oscillations of non-linear elastic systems. 

After separating one of the coordinates, say .zlr we use the change z1 = CXi, where c = ~(0). 
Clearly, II (0) = 1. In addition, we can aesume without loss of generality that .rr'.(@) = 0. 

Eqs.tl.1) can be rewritten as follows: 

pm--2 . . xi + ~&,.Q,z*, . . . ,qJz%c 0, I’= 2 cw”-‘)(s%, x9> . . . I GJ (1.2) 
6=- fJ 

where I-f'f contains r-th degree terms with respect to the variables in the potential i'(c. I], ;r?. 
. . ., .mj = rl (.2X (.Q), zz (4.. . ., Z, (.7,)f. Here the energy integral has the form 

8X .r;*‘t + v(c,x~,521... *&J= il (1.31 

where h is the energyof the system. Henceforth, we shall assume that the oscillationamplitude 
c = .zl (0) is an independent parameter, and the energy is given by (1.3). Therefore, it is 
convenient to represent the energy h as the sum of terms corresponding to the uniform comyx3nents 
of the potential V, 

ain-2 
I&= s &%, 

If;_* Wf 

On introducing a new independent variable x E .zl and eliminating time from Eqs.fl.2) 
using the energy integral (1.31, we obtain equations for determining the trajectories si = xi(z) 
in the oonfiguratkon space, 

[- Sj’Yx (c, 5, a . ” 3 &J in I‘,, (c, I, . , . , s,)] = 0 

(1=2,3, . . ..n) 

*Prikl.Matem.Mekhan.,4$,5,738-743,19&j. 



(the prime denotes differentiation with respect to 3.). 
The above equations can be used to find the trajectories of the normal oscillations cf 

the initial system in the form of single-valued analytic functions si = zi(z) (see Fig.1). 
The trajectories have cusps onthe maximum isoenergetic surface 

," : 1‘ = ii, where al.1 velocities vanish. However, these points 

9 

are the singular points of Eqs.(l.S). It can be verified by 

.y='l * i direct calculation that these singular points, which are the 

i 

@ 

points cf intersection of the trajectories with the surface 

Xl 
I'= I(, are removable if the trajectory intersects the surface 
orthogonally, /I - 3/, that is 

Here X is the value of the variable s on the surface 
v- II. As indicated above, one of these values is Xc11 = ~(0) z= 1. 

For small amplitudes c, for a generating system we must choose a uniform linear system 
with potential I-ii), and for large amplittide a uniform non-linear system with potential T-c"". 
Both linear and non-linear uniform systems are capable of rectilinear normal oscillations of 
the form zi = kix, the constants ki being determined from the algebraic equations k,i‘,cri(l. 
k?.. . . . k,,) - 1”;’ (1. x-2. . . k,) = I? (see /li). The number of these oscillations may exceed the 
number of degrees of freedom. 

For small c, in the vicinity of a linear system we can find trajectories of the normal 
oscillationsinthe form of series in powers of .x' and c, 

(1) &r, ? "'(r)C'aS 2 5 %;i)r'c~ = i_1 r*,t (i=2, 3, ., , II) (1.7) 
J-0 J--01:0 

and in the vicinity of a uniform non-linear system (for large c) in the form cf series in 
powers of z and c-l (see 12 -3/?, 

(1.8) 

Note that the functions ai and fij(.r) can also be obtained in quadratures since the 
equations in varrations for the normal oscillations cf uniform systems reduce to hypergeometric 
systems /5/. 

The constraints onthe generating systems both in the linear and the non-linear case are 
shown in 12, 3/ and they mean that the cases of inner resonance (branching of the normal oscil- 
lation: are excluded from the study. 

The amplitude values J' - 1. J.~(~ (l). or .z~'?' (1) :for .l- ,r,' I- (1) fully define the mode of normai 
oscillations. Therefore, tc simplify the calculations we shall consider below only the expansions 

PI (1' =.r:l) (1)and p,':) = z,ei (1) in powers of c which are obtained from (1.7) and.(1.8) for r = 1 
(here d,(l) _ (I;?) (I), p,"' -7 P, Iti (I) ; further, we make use of the abbreviated notation c z:i~,-_j= 
p t-r,, to 
LT*?(TI I and analogous notation for other similar schemes:: 

I- 

2‘ To join the local expansions (l.g), and tc study the behaviour of the normai oscillation 
trajectories for arbitrar: values of the amplitude c we use the rational-fractional Pade diagonal 
representations 

In addition to these re Fresentaticns in positive powers of c, we alsc 9ake use of the 

representation ir; negative poders cf c, '_;- multiplying the n'umerator an* denoznator cf iZY.1' 

by c-* and comparin? the expressions obtained and Eq.12.1) with expansion <l.e:. This yields 

Retaining the terms of order c'(_s< I.< .s) and comparing the coefficients of identical 

powers of c, we obtalr.tl - 1 systems zf 2(s - l)l.inear algebraic equations for determining ai"'. 
bj"' (i = 0, 2. 2.. , ., S). Tiie determinants of these systems have the form 
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Yo 0 . ..O’ 

B:‘;!, = y1 yo .*. 0 
. . . . . . . . . . . 

Ys Ya-1 . . yo I 

where s + 1 is the dimension of the matrix, I,,1 is the unit matrix, and T is the symbol of 

transposition. 
Since the determinants (2.3) are not, generally speaking, zero, the systems of algebraic 

equations have a unique trivial exact Solution aj(O = bjS = I). 

bet us separate a certain approximate Pad< representation which corresponds to the retained 
terms in expansions (1.91, with non-zero coefficients sj"' and bjCi). We assume that bo”) # 0 

(otherwise pi(') (I)+ oo as c -+ 0). We can assume without loss of generality that ho(i) = 1. 

NOW the systems of algebraic equtions for finding aj(i) and b,(i) become overdetermined. All 

unknown coefficients a$), al('), . . ., a,(i), b,(i), b,(‘), . . ., b,,(i) (i = 2, 3,‘. . ., n) are determined from the 
2s -/- 1 equations, and the "discrepancy" of this approximate solution is obtained by substitu- 
ting the values of all the coefficients into the remaining equation. Clearly, the discrepancy 
is determined by the value of 3,('), since for is,") = 0 we obtain non-zero solutions and, 
correspondingly, the exact Pad6 representations for expansions (1.9) with the given approximation 
with respect to c. 

Hence follows the necessary condition regarding the convergence of the sequence of Padg 
approximations (2.1) to the rational fractional functions 

ass-m. It is 

lim j8ci) = 0 (i = 2, 3,. . .1 n) (2.5) 
S-.oE 

In fact, if conditions (2.5) are not satisfied then obviously the non-zero values of the 
coefficients a)(+) and bj(i! are not obtained in representations (2.4). 

We note that the limit Padg representations PC') will be useful for describing a solution 
for any value of c, if the functions Pci) have no poles. 

Since in general there are several local quasilinear expansions (1.7), and essentially 
non-linear local expansions (1.8), and the numbers of these expansions may not be the same, the 
convergence conditions (2.5) enable us to establish the connection between qusilinear and the 
essentially non-linear expansions, i.e. to determine which of them correspond to one solution, 
and which to various others. 

3. For a concrete analysis, using the technique described, let us examine a conservative 
system with two degrees of freedom, whose potential contains terms in the second and the fourth 
power of the variables. On making the replacement z,= CI,Q= cy, where c = :, (O), (Z ((1) = 4). we 
obtain 

Here the equation for determining the trajectory y(z) has the form 

2y" (h - 1) T (1 L y'2) (- y'Vx + TV) = 0 

and the boundary conditions (1.6) can be expressed as 

(- Y'l., + I U)h_,7=0 = 0 

(3.1) 

On the surface h- V=O (when z'= y'= (I) one of the values of I is Z(O)= 1 ; therefore 
the corresponding boundary condition has the form 

, , 
(- Y 1.x T 1 v)l,+ = 0 (3.2) 

The system is symmetric about the origin, and therefore the second boundary condition 
(for 2=-l) is the same as (3.2). 

c-2 
Since the trajectory will be represented in the form of expansions in powers of 9 or 

I we introduce a parameter v (v= c2 in the quasilinear case, and v = c-1 
non-linear case). 

in the essentially 
iJow the solution of Eq.(3.1) is sought in the form of series in the small 

parameter V, 
m 

I _ ~, Yj (5) ” 
j=O 

In Eqs.(3.1) and the boundary conditions (3.2), V = V,, + ~1,, h = h, + vh, ; at the same 
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time in the quasilinear case 

V = cz, I., = y(z) J', = V(4), h, = vi*) II=+ h, = V(') I-1 

and in the essentially non-linear case 

y = c-2, i', = v(4) , I’, = I’(‘), h, = V”’ , = x 1, k, = i’(*) /X=1 

In the zeroth-order approximation with respect to v both linear and non-linear systems 
are capable of the rectilinear normal mode of oscillations in the form Y = k,z. The constants 
k, are determined from algebraic equations of the second degree (linear system) or the 
fourth degree (non-linear system), which are obtained from (3.1), 

- k,T.,,l (1. k,) _t I;,, (I. k,) = 0 (3.31 

To be specific, let d, = d, = 3; d, = -2; y1 = 1; 1'1 = 0; ys = 3: ~~ = 9.2091; yj = 2. We Will write 
the equations of motion for this system 

=” j Lr + 2 (3 - y) L ?(ss + 3zy? f 0.2091 yS) = 0 (3.4! 
Y T Y + 2 (y - 5) + c* (2yS A- 3r*y ~06273y%) = 0 

In the linear limit (v= 0). using Eqs. (3.3) we obtain two rectilinear normal modes of 
oscillations of the form Y= k,z. k, ‘I’= 1; ko@l= -1. and the non-linear system (the equations of 
motion contain the cubic terms in I. Y only) admits of four such forms: k,@) = 1.49G: A,@) = 0: 
k,c5) = - 1.279: It,‘“’ = -5. 

To determine the curvilinear trajectories of normal oscillations close to straight lines, 
we use Eqs.(3.1) and the boundary conditions (3.2). In particular, to a first approximation 
with respect to z the equation for determining the trajectory has the form 

ZY," (li, - l-,j L (1 i_ ko2) [- .Y,‘I.~~ -!/I iI‘, ,,,_ - kolTo,I,i - kJlx A “1,,1 = 0 

where we substitute y = k+ everywhere in the functions 1, and 1:, and in their derivatives. 
The equations in the subsequent approximations with respect to v are obtained similarly. 
Such a splitting should also be carried out in the boundary conditions (3.2). 

On retaining in the solution terms containing 1 and P (there are no terms in power of 
22 because of the system's syn?metry about the origin), and performing a calculation in two 
approximations with respect to V, we obtain (henceforth, everywhere a= ~(1)): 

in the quasilinear case (V ~: c2) 

YU) = f I y (_ 0.532 2 _ 0.355 .$j L v2 (1.97Or - 2.405 X3) 

y(?) = _ _z -;_ \‘ (-0.0gg z - 0.013 23) + v?(O.O41 z f 0.00929) 
$1' = 1_-(1.1;;\-__0.435+ Q'?l = -I-U.112~ L (7,050 \* 

in the essentially non-linear case (v= c-*) 

$3' = 1.496 I .- y (0.63(11 -0.098r3) -I_ p2 (0.822.~ - 0.1?3r3) 

!, 2' : \ (J - 0.667r3, - \.? (1.139s - 4+3) 
,,'5' = -,.2jgz + T (0.8442 - U.Oi'iz3) j Y* (--2.624r - 0.3511) 
Y,"' = -51 I V (-2844z - 0.321 ts) $ 02 (1.9621 - 0.099 X3) 
9(3) = __i__(~.ii'ir _ 0.435~2 f(4) = 1.667~ - 2.8ilG 

P (5' = __1.2;9 I (1.76iy - 2.273~~ p (o = -5-3.165~ + 1.863 ~2 

3.5, 

Comparing pairwise the quasilinear expansions 9") (i= 1.2) with the expansions for large 
amplitudes p'J)(j = 3, 4, 5, 6), we compute for each pair the determinant (2.4) for s= 1.2. The 

calculations show that the error decreases as .s increases only for pairs p(l) and f'4' , and 
9(?i and p's) . Thus, we must assume that each pair corresponds to one solution. We join the 
local expansions using representation (2.1) for s=2. 

For pairs p(l) and pc4) we have the representation 

P = Y (I) = 
1 - 1,2oc* 

1 + 1.61c* J- 0.72~' 
(3.6) 

(the coefficient b,=O.i2 computed with an error of 606). The representation for pairs 

and pa) is 9(X 

p=Y(l)= - 
1-1.11c~.-0.2i5c~ 
1+1.90@+0.215~ 

(:?_i) 

(the coefficient b, = 0.215 is computed with an error of 0.01). 
Since for the local expansions 9'4) and 9 (6) there are no corresponding expansions for Small 

amplitudes, it is obvious that as the amplitude decreases these two solutions disappear, 
merging at a certain limit point. The approximate value of the amplitude cg for which this 

occurs is determined by comparing p(3) with p(B). We obtain C= c0 ~0.5. 
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Thus, the rational fractional Pade/ presentation enable us to judge the non-local behaviour 
of the oscillations of finite-dimensional non-linear systems. Figure 2 shows the evolution 

-7ll.Z L? n/c/ rrr, 

Fig. 2 

of the oscillation modes using parameters X= In(i+ c%*), U= arctgp , (the graph is periodic 
with respect to CC, with a period of 2X). The numbers 1,2,...,6 mark the curves which cor- 
respond to the expansions P"', P"), . . . y'6Jinpowersofc. Thesolidlines correspond to ananalyticsolution 
(the representations (3.6) and (3.7) were used) and the dashed lines represent the check 
calculation made by A.L. Zhupiev on a computer. Notice the good agreement between the analytical 
results and the numerical calculations. For the solution of (2.5), the representation (3.7) 
and numerical calculations give identical curves. 
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