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THE JOINING OF LOCAL EXPANSIONS IN THE THEORY OF NON-LINEAR OSCILLATIONS *

YU.V. MIKHLIN

The behaviour of normal modes of oscillation in non-linear congervative
systems with a finite number of degrees of freedom, when the amplitude
changes from zero to infinity is studied. In the non-linear case, the
normal oscillations represent a generalization of the normal oscillations
of linear conservative systems (see /1/). It is assumed that the potential
of a non-linear system is 3 polynomial of even degree in all positional
variables, One can construct the trajectories of the normal oscillations
in configuration space both for sufficiently small amplitude (a quasi-
linear expansion), and for sufficiently large amplitude, using the fact
that in these cases the system is ¢lose to a uniform system (see /2, 3{).
The local expansions obtained are joined using rational-fractional Pade
representations (see /4/) which enables the behaviour of oscillation modes
to be followed when the amplitude changes continuously,

1. an initial conservative system is defined by the following equations of motion

5"+ Bz 200 )y =0 =12....n) 1.H

where the potential Tl {z;. 2, ....2z;) is a positive definite polynomial in z, ..., 2, whose lowest
degree is two, and the highest is 2m. Here and below we assume that the kinetic energy is
reduced to the form T =1, (u® +. ..+ 2%, An equation of this type is often encountered

problems of the coscillations of non-linear elastic systems.,
After separating one of the coordinates, say 2, we use the change z,= c¢z;, where ¢ = 3 (0.
Clearly, 2,{0)= 1. 1In addition, we can assume without loss of generality that o {() = 0.
Egs. (1.1) can be rewritten as follows:

am—2

B V(e mn o) =0 Ve S CTE(ay, 2. 7) (1.2)
k=g
where 1" contains r~th degree terms with respect to the variables in the potential V (e, 7y, a3,
<oy Ip) = 11 (25 (24}, %2 {02}, . ., 25 (%)) Here the energy integral has the form
n
Sat V(e antn.. . a)="h (1.3)

i=1
where h is the energy of the system. Henceforth, we shall assume that the oscillation amplitude
¢ =z, (0) is an independent parameter, and the energy is given by (1.3). Therefore, it is
convenient to represent the energy h as the sum of texms corresponding to the uniform components
of the potential V,
m—~2
Frees 2 ckfék (1.4)
On introducing a new independent variable y == z; and eliminating time from Egs. (1.2)

using the energy integral (1.3}, we obtain equations for determining the trajectories gz, == z; {2)
in the configuration space,

20 [h—V{e s 200 r )] ~ 1+ 3 (@:)2] (1.5)
i=2
[—2Veler o ovaiy)+ Vagler oy L 2,)] =0
([=273y... 972)
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(the prime denotes differentiation with respect to ).

The above equations can be used to find the trajectories of the normal oscillations cf
the initial system in the form of single-valued analytic functions x; = z; (r) {see Fig.l).
The trajectories have cusps on the maximum isocenergetic surface
V" =1, where all velocities vanish. However, these points
are the singular points of Egs.{1.5). It can be verified by
direct calculation that these singular points, which are the
points of intersection of the trajectories with the surface
"=/, are removable if the trajectory intersects the surface
orthogonally, /1 - 3/, that is

[— Voo o a () o comp {2)) — Vg oz an (o) oo (1.6)

« Tn @ emx = 0
Here X is the value of the variable xr on the surface
V=1 as indicated above, one of these values is Xy = 7 (0) =

For small amplitudes ¢, for a generating system we must choose a uniform linear system
with potential 1?9, and for large amplitude a uniform non-linear system with potential Ve™.
Both linear and non-linear uniform systems are capable of rectilinear normal oscillations of
the form z; = k;z, the constants Ak, being determined from the algebraic eguations AV, (1.
kooo o o Ry + l‘\") (1. koo oo o By =0 (see /1/). The number of these oscillations may exceed the
number of degrees of freedom.

For small ¢, in the vicinity of a linear system we can find trajectories of the normal
oscillations in the form of series in powers of r and ¢,

Fig., 1

« .
=3l @)= 3 B ol (=23....n) (L7)
e =0 =

and in the vicinity of a uniform non-linear system (for large ¢) in the form of series in
powers of r and ¢! {(see /2 -3/),
=4 e 0
= E B zye = 2 !2- Bzl (1=2,3....,n) (1.8)
=0

i=0 =

S

Note that the functions oy (r) and B;(x) can also be obtained in quadratures since the
equations in variations for the normal oscillaticns of uniform systems reduce to hypergeometric
systems /5/.

The constraints on the generating systems both in the linear and the non-linear case are
shown in /2, 3/ and they mean that the cases of inner rescnance (branching of the normal oscil-~
lation) are excluded from the study.

The amplitude values o = L. &% (i) or /2 (1) {for . z; = 1) fully define the mode of normal
oscillations. Therefore, to simplify the calculations we shall consider below only the expansions
p =20 (1) and o = ;@ (1) in powers of ¢ which are obtained from (1.7) and.(1.8) for z =1
(here o = ;9 (1), fi" = B0 (1Y ; further, we make use of the abbreviated notation 5_‘ a;f}rrjz

: i ) o e
}:a‘f‘fﬁf , and analegous notation for other similar schemes;:

o =TSl o =2p (1.9

2. To join the local expansions (1.9), and te study the behaviour of the normal oscillation
trajectories for arbitrary values of the amplitude ¢ we use the ratiocnal-fractional Pade diagonal
representations

: Sl .
pO W e 200 s i=23..,n) (2.1)
: NN ’

In addition to these representatiocns in positive powers of ¢, we alsc make use of the
1 : s N - & . H £ D
representation in negative powers cf ¢, by multiplying the numerator and denominator cf |

, . ] " L . 1og . P
py ¢*® and cocmparing the expressions obtained and Eq. (2.1} with expansion (..2,. This yielas

i) j () I BT e ki) 9
Ea’%{w)) (Eb%{l))=2ai(5)' (zfjl(m)) (Zb,(s) )”201(»“/ (2“-}
Retaining the terms of order ¢ (— s<(r < $} and comparing the coefficients of identical
powers of ¢, we obtainn — 1 systems of 2{s - 1)}linear algebraic eguations for Getermining g/,
5O G =0,1. 2., 8. The determinants of these systems have the form

Lo
pisg

A% = det AL {2.
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where s + 1 is the dimension of the matrix, [,.; is the unit matrix, and T is the symbol of
transposition.
Since the determinants (2.3) are not, generally speaking, zero, the systems of algebraic
equations have a unique trivial exact solution ah = b = 0.
Let us separate a certain approximate Padé representation which corresponds to the retained
terms in expansions (1.9), with non-zero coefficients a;® and b, We assume that by® = 0

(otherwise p;W (1) > o0 as ¢ - 0). We can assume without loss of generality that ¥ = 1.
Now the systems of algebraic equticns for finding g0 and b;® become overdetermined. All
unknown coefficients ae®, a19,. .., g, b;®, b®, . . . b (i =2, 3. .., n)are determined from the

2s + 1 equations, and the "discrepancy" of this approximate solution is obtained by substitu-
ting the values of all the coefficients into the remaining equation. Clearly, the discrepancy
is determined by the value of A, since for A, = 0 we obtain non-zero sclutions and,
correspondingly, the exact Padé representations for expansions (1.9) with the given approximatiocn
with respect to c.

Hence follows the necessary condition regarding the convergence of the sequence of Padé
approximations (2.1) to the rational fractional functions

po (S (x)CJH v b")cfj (bf,“E 1) (2.4)
J—'—O J~

as s—> oo, It is

lim A® =0 (=2 3,..., n) (2.5)

In fact, if conditions (2.5) are not satisfied then obviously the non-zero values of the
coefficients ¢;» and b;® are not obtained in representations (2.4).

We note that the llmlt Pad€ representations P% will be useful for describing a solution
for any value of ¢, if the functions P have no poles.

Since in general there are several local quasilinear expansions (1.7), and essentially
non-linear local expansions (1.8), and the numbers of these expansions may not be the same, the
convergence conditions (2.5) enable us to establish the connection between gusilinear and the
essentially non-linear expansions, i.e. to determine which of them correspond to one solution,
and which to various others,

3. For a concrete analysis, using the technigue described, let us examine a conservative
system with two degrees of freedom, whose potential contains terms in the second and the fourth

power of the variables. On making the replacement :z; = cz, 2z, =y, where c¢=:(0), (z((h=1), we
obtain
. 2 ¥ . 21 222 R
1im?erTT%WTPG“TTJﬁVﬂ32‘nﬂﬁ+%—7 =1 2@

Here the equation for determining the trajectory y(z) has the form

=TT 2y (= Vet 1) =0 (3.1)
and the boundary conditions (1.6) can be expressed as
(= U Va = Vihpymo= 0

On the surface h-— V=0 (when z =y = () one of the values of z is z(0)=1; therefore
the corresponding boundary condition has the form

(=¥ Ve Vyllemy = 0 @2
The system is symmetric about the origin, and therefore the second boundary condition
(for z= —1) is the same as (3.2).
Since the trajectory will be represented in the form of expansions in powers of ¢ or
¢?, we introduce a parameter v (v= ¢ in the quasilinear case, and v=c¢? in the essentially

non-linear case). ilow the solution of Eq.(3.1) is sought in the form of series in the small
parameter v

£

y= D y;(0)vi

i=0

In Egs. (3.1) and the boundary conditions (3.2), V=V, ++vW, h=h,+ vk ; at the same
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time in the quasilinear case
V=% Vy= ve), V= V@, by = y@ lygs B2 = v -
and in the essentially non-linear case

v=c2 Vo=V, 1= VO p = v,

’

e = VO

In the zeroth-order approximation with respect to v both linear and non-linear systems
are capable of the rectilinear normal mode of oscillations in the form == koz. The constants
ka are determined from algebraic equations of the second degree (linear system) or the
fourth degree (non-linear system), which are obtained from (3.1),

— kg Tox (4, ko) - Voy (1. kg) = 0 (3.3)

To be specific, let dy=d;=3,d3=—2; y,=14; 3,=0; y;3=23 y,=02091; y;, =2 We will write
the equations of motion for this system

27 = 2 (x — y) + ® (S 3xy® - 0.2081 ) = (3.4
Y=y 2y — ) o (290 4 32ty L 0.6273y%)

In the linear limit (v =), using Egs.(3.3) we obtain two rectilinear normal modes of
oscillations of the foxrm y= kaz, k'V = 1; k,® = —t, and the non-linear system (the equations of
motion contain the cubic terms in =z, y only) admits of four such forms: k® = 1.496; k¥ = 0:
ko® = — 1.279; k,'® = —5.

To determine the curvilinear trajectories of normal oscillations close to straight lines,
we use Egs. (3.1) and the boundary conditions (3.2). 1In particular, to a first approximaticn

with respect to + the equation for determining the trajectory has the form

203" (ho— Vi) + (1 k?) [= 0V — 51 (T, = BV ) — Rl e =V, ] = 0

where we substitute y= ks everywhere in the functions V, and ¥V, and in their derivatives.
The equations in the subsequent approximations with respect to + are obtained similarly.
Such a splitting should also be carried out in the boundary conditions (3.2).
On retaining in the solution terms containing r and z* (there are no terms in power of
z? because of the system's symmetry about the origin), and performing a calculation in twe
approximations with respect to +, we obtain (henceforth, everywhere o=y (1))
in the quasilinear case (v:=¢%
y D =z £y (— 0532 z + 0.355 2%) 2 (1.970r — 2.405 =2
¥ = — z v (—0.009 z — 0.013 %) ++ v2(0.041 = <~ 0.009s%)
P = 1—0.477v—0.435v2 o = —1—0.112v - 0.050 +*

in the essentially non-linear case (v = c?

= 1.496 z - v (0.830x —0.09823) 4 42 (08227 — 0.123:%) s
p = vz — 0.6672%) 1 4 (11297 — 42%)
Y = —1.2797 + v (0.844z — 0.0772%) + v? (—2.624r —~ 0.35123)
Y1 = 5z L v (—2.844z — 0.321 2%) + +% (1.962z — 0.099 z°%)
p® = —4—0.1477v — 0.435v2 p¥) = 1.667v — 2.871x2
p® = —1.279 = 0.767v — 227332 p® = —5--3.465v - 1.863 +*

Comparing pairwise the quasilinear expansions p'? (j=1,2) with the expansions for large
amplitudes p@ (j = 3, 4, 5, 6), we compute for each pair the determinant (2.4) for s=1t.2 The
calculations show that the error decreases as s increases only for pairs p® and p@, and
p® and . Thus, we must assume that each pair corresponds to one sclution. We join the
local expansions using representaticn (2.1) for = 2.

For pairs p and p® we have the representation

1+ 1,20¢2 .
e=v() = T T6la £ 0,72 @6
(the coefficient &, = (.72 computed with an error of 0.06). The representation for pairs
and p® is p®
— 1 —1.141c2.— 0,275 3.7

p =y = T 1700: £ 0.215
(the coefficient = (.25 is computed with an error of 0.01).

Since for the local expansions p@ and o there are no corresponding expansions for small
amplitudes, it is obvious that as the amplitude decreases these two solutions disappear,
merging at a certain limit point. The approximate value of the amplitude ¢ for which this
occurs is determined by comparing p® with p®., We obtain ¢=¢ =0.5.
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Thus, the rational fractional padé presentation enable us to judge the non-local behaviour
of the oscillations of finite-dimensional non-linear systems. Figure 2 shows the evolution

N
\
v
e
X

2 AN
«

-7/2 ~x/Y 1/ /4 /2

Fig. 2

of the oscillation modes using parameters « = In(f 4 ¢%?), «=arclgp , (the graph is periodic

with respect to a«, with a period of 2a). The numbers 1,2, ..,6 mark the curves which cor-~
respond to the expansions p%, p®, ... ¢® in powers of c. The solid lines correspond to an analytic solution
(the representations (3.6) and (3.7) were used) and the dashed lines represent the check
calculation made by A.L. Zhupiev on a computer, Notice the good agreement between the analytical
results and the numerical calculations. For the solution of (2.5), the representation (3.7)

and numerical calculations give identical curves.
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